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Abstract

We present a least-squares formulation for the numerical solution of incompressible flows using high-order triangular
nodal elements. The Fekete points of the triangle are used as nodes and numerical integration is performed using tensor-
product Gauss–Legendre rules in a collapsed coordinate system for the standard triangle. A first-order system least-squares
(FOSLS) approach based on velocity, pressure, and vorticity is used to allow the use of practical C0 element expansions in
each triangle. The numerical results demonstrate spectral convergence for smooth solutions, excellent conservation of mass
for steady and unsteady problems of the inflow/outflow type, and the flexibility of using triangles to partition domains
where the use of quadrangles would be cumbersome or inefficient.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The numerical solution of the incompressible Navier–Stokes equations using least-squares based finite ele-
ment models is among the most popular applications of least-squares methods [8]. Least-squares formulations
for incompressible flows circumvent the inf–sup condition, thus allowing equal-order interpolation of veloc-
ities and pressure, and result (after suitable linearization) in linear algebraic systems with a symmetric positive
definite (SPD) coefficient matrix.

Spectral element formulations for incompressible flows using least-squares based models have been pre-
sented by Proot and Gerritsma [17], Pontaza and Reddy [14,15], and Heinrichs [6]; where the expected expo-
nential convergence property for smooth solutions has been demonstrated. In addition, good conservation of
mass and stability for moderately high Reynolds number unsteady flows has been demonstrated in recent
work by Pontaza [16].
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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Spectral element formulations were originally developed [13] and have been traditionally implemented in a
quadrangle (in 2D) or hexahedral (in 3D) based setting, as the multi-dimensional spectral basis is easily con-
structed by tensor products of the one-dimensional basis. However, in order to handle complex geometries
with efficiency the use of triangular elements is preferred.

An efficient approach to construct a C0 modal basis on the triangle by warped tensor products is due to
Sherwin and Karniadakis [18], where the quadrangle and its quadrature points are transformed into a triangle
by means of a coordinate transformation. Here, we construct a C0 nodal basis using the Fekete points of the
triangle [19] as nodes.

The drawback of least-squares formulations is that these have associated with them the requirement of
higher regularity of the finite element spaces [15]. The degree of necessary regularity across inter-element
boundaries is dictated by the differentiability requirements of the governing equation(s) under consideration
and/or the norms used to measure their residuals in the least-squares functional. To reduce the higher regularity
requirements and allow the use of practical C0 element expansions in the least-squares finite element model, the
governing equation(s) are first transformed into an equivalent first-order system and the least-squares func-
tional defined by measuring their residuals in terms of L2 norms only. Transformation of the governing equa-
tions to an equivalent first-order system may necessarily imply that additional independent variables need to be
introduced, implying an increase in cost. However, the auxiliary variables may be argued to be beneficial as they
may represent physically meaningful variables, e.g. vorticity, and will be directly approximated in the model.

Our objective is to demonstrate the use of the triangle based spectral nodal basis in the context of a least-
squares formulation for incompressible steady and unsteady flows. We verify the exponential convergence
property, test for conservation of mass, and demonstrate the flexibility of using triangular elements in repre-
senting geometries where the use of quadrangles would be cumbersome.

An overview of the paper is as follows. In Section 2, we give details on the construction of the triangle based
spectral nodal basis. In Section 3, we present the least-squares finite element formulation for the incompressible
Navier–Stokes equations. Section 4 is devoted to numerical examples showing: (a) the exponential convergence
property of the triangle based nodal spectral basis, (b) good conservation of mass for the least-squares formu-
lation using triangles, and (c) the flexibility of using triangular elements for lid-driven cavity flows in a wedge
and flow past two-circular cylinder in a side-by-side arrangement with small surface-to-surface spacing. In
Section 5 we present concluding remarks.

2. Nodal expansions in the triangle

To construct a nodal expansion in the triangle we require an optimal set of nodal points and a suitable
Lagrange basis through these nodal points. For a quadrangle, these simply result from tensor-products of
the one-dimensional Gauss–Lobatto–Legendre (GLL) points and the Lagrange basis going through these
optimal points. Here we use a non-tensorial nodal expansion in the triangle.

2.1. Nodal points

A good choice for nodal points in the triangle, are the points that maximize the determinant of the Van-
dermode matrix, which are known to give a small Lebesgue constant. The Lebesgue constant may be inter-
preted as a measure of how close the approximation to a function, using the polynomial basis through the
chosen nodal points, is to the best approximation in the maximum norm. These points are known as Fekete
points; and on the triangle the set consists of Nt = (p + 1)(p + 2)/2 distinct nodal points, where p is the order
of the polynomial basis. The Fekete points are independent of the basis used to compute them, as a change in
basis simply scales the determinant by a constant.

In the one-dimensional interval [�1,1], Fekete points are GLL points [1]. Moreover, in the standard square
and cube the Fekete points are the tensor-product of the GLL points [1]; and on the sides of the standard tri-
angle, the Fekete points are GLL points [19]. This nice property allows for conforming meshes of triangles and
quadrangles. The Fekete points have been accurately computed for the triangle, up to p = 19, by Taylor et al.
[19]. They observed that the Lebesgue constant using the Fekete points behaved as

ffiffiffiffiffi
N t
p

, while for equispaced
points the Lebesgue constant is known to increase exponentially. Hence, the optimality of the Fekete points.
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2.2. Lagrange basis

There is no closed-form expression for the Lagrange basis through sets of points in the triangle, so we
express the basis in terms of another basis which has a closed-form definition. This is possible, as long as both
basis span the same polynomial space. Ultimately, to obtain the Lagrange basis, a matrix inversion of the Van-
dermode matrix associated with the closed-form basis is needed; thus the choice of the basis is important as it
will dictate the conditioning of the Vandermode matrix.

In the standard triangle,
T ¼ fðn; gÞj � 1 6 n; g 6 1; nþ g 6 0g

we use the following orthogonal polynomial [3],
/mnðn; gÞ ¼ P 0;0
m ðn̂Þ

1� ĝ
2

� �m

P 2mþ1;0
n ðĝÞ ð1Þ
with n̂ ¼ 2ð1þ nÞ=ð1� gÞ � 1, ĝ ¼ g, and {(m,n)|m,n P 0; m + n 6 p} for a total of 1,2,3, . . . ,Nt =
(p + 1)(p + 2)/2 modes in the basis, where p is the order of the polynomial basis. In (1), P a;b

k are Jacobi poly-
nomials of order k.

For a unique bijection j = j(m,n), we define the (generalized) Vandermode matrix as Vij = /j(ni), where
ni = (ni,gi) are chosen nodal points in the triangle (in our case, the Fekete points) and dim(Vij) = Nt · Nt.
The Lagrange basis fLjgNt

j¼1 at any point n 2 T is obtained by performing a collocation projection:
/iðnÞ ¼
XNt

j¼1

/jðniÞLjðnÞ ¼
XNt

j¼1

V ijLjðnÞ
or in matrix notation
f/ðnÞg ¼ ½V �fLðnÞg

and consequently
fLðnÞg ¼ ½V ��1f/ðnÞg

where [V]�1 denotes the inverse of the Vandermode matrix [V] with entries Vij defined earlier. Fig. 1 shows
selected vertex, edge, and interior members of the p = 9 Lagrange basis. The Kronecker-delta property of
the Lagrange basis is evident from the plots.

The derivatives of the Lagrange basis are computed in a similar fashion, as follows:
oL
on
ðnÞ

� �
¼ ½V ��1 o/

on
ðnÞ

� �
;

oL
og
ðnÞ

� �
¼ ½V ��1 o/

og
ðnÞ

� �

In practice, these operations are performed only once in a pre-processing stage for the master element.

2.3. Numerical integration

In the resulting least-squares formulation, among other types of inner products, it will be necessary to eval-
uate inner products of the form
ðLi; LjÞ ¼
Z

T
Liðn; gÞLjðn; gÞJðn; gÞdndg
where Li; Lj 2 Pp and J(n,g) is the Jacobian of the transformation Xe2 (x,y) ¢ T2 (n,g). For the general case
of curved elements, the Jacobian will not be constant over the triangle.

For quadrangles, integrals are efficiently computed using the tensor-product of the Gauss–Legendre quad-
rature points and weights. Using a pth order Gauss–Legendre quadrature rule over the quadrangle, exactly
integrates the product LiLj 2 P2pþ1. Unfortunately, there is no obvious analogue set of weights for the Fekete
points that will achieve the same level of accuracy.



Fig. 1. The standard triangle and its Fekete points for p = 9. Selected vertex, edge, and interior shape functions of the Lagrange basis.
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The quadrature weights proposed by Taylor et al. [19] for use with the Fekete points are exact for LiLj 2 Pp,
which is not sufficient. The set of weights used by Warburton et al. [20] and Pasquetti and Rapetti [12] are
exact for LiLj 2 P2p, but valid only for a constant Jacobian, i.e. straight sided elements.

Here we use a tensor-product of the Gauss–Legendre quadrature points and weights in the collapsed coor-
dinate system
bT ¼ fðn̂; ĝÞj � 1 6 n̂; ĝ 6 1g

with n̂ ¼ 2ð1þ nÞ=ð1� gÞ � 1, ĝ ¼ g. Unlike the standard triangular region T, the bounds on the region bT are
no longer dependent on each other.

In the collapsed coordinate system the inner product is written as
ðLi; LjÞ ¼
Z þ1

�1

Z þ1

�1

Liðn̂; ĝÞLjðn̂; ĝÞJðn̂; ĝÞ
1� ĝ

2
dn̂dĝ
and can be easily evaluated using the tensor-product of the Gauss–Legendre quadrature points and weights.
Here we use p + 1 Gauss–Legendre quadrature points in each collapsed coordinate direction. As an added
bonus, since the Gauss–Legendre quadrature points do not include the end points of the interval [�1,+1],
no special attention is needed in evaluating derivatives of /mn at the end point g = +1 of the standard triangle.

This approach is the one developed by Sherwin and Karniadakis [18] for use with modal expansions in the
triangle, albeit they use a Gauss–Lobatto–Legendre quadrature in the n̂ direction and a Gauss–Radau–Jacobi
quadrature in the ĝ direction, which absorbs the Jacobian term ð1� ĝÞ=2 and also avoids the point g = +1 of
the standard triangle.

3. Least-squares formulation for the incompressible Navier–Stokes equations

Let �X be the closure of an open bounded region X in Rd , where d = 2 or 3 represents the number of space
dimensions, and x = (x1, . . . ,xd) = (x,y ,z) be a point in �X ¼ X [ oX, where oX = C is the boundary of X. We
consider the solution of the Navier–Stokes equations, which in dimensionless form can be stated as follows.
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Find the velocity u(x, t) and pressure p(x, t) such that
ou

ot
þ ðu � rÞuþrp � 1

Re
Du ¼ 0 in X� ð0; s� ð2Þ

r � u ¼ 0 in �X� ð0; s� ð3Þ
uðx; 0Þ ¼ 0uðxÞ in X ð4Þ
u ¼ usðx; tÞ on Cu � ð0; s� ð5Þ
where D = $2, Re is the Reynolds number, and in Eq. (4) the initial conditions are given. A well posed problem
requires $ Æ 0u = 0 in �X. If C = Cu, the pressure may only be determined up to a constant in which case the
average pressure is set to zero.

For ease of exposition, we consider the stationary Stokes problem with homogeneous boundary conditions.
In other words, we drop the nonlinearity and the transient term momentarily to present the least-squares for-
mulation. The resulting Stokes problem (with Re = 1) is given by:
� Duþrp ¼ 0 in X ð6Þ
r � u ¼ 0 in �X ð7Þ
u ¼ 0 on C ð8Þ
To define the variational problem, we will make use of the following spaces:
H s
0ðXÞ ¼ fv 2 H sðXÞjv ¼ 0 on Cg

�H sðXÞ ¼ fq 2 H sðXÞj
Z

X
qdX ¼ 0g
for s P 0, with H0(X) = L2(X).

3.1. Weak form Galerkin formulations

Before presenting the least-squares formulation, we briefly review formulations using the traditional weak
form Galerkin approach. This will allow us to draw some comparisons between the formulations.

In the weak form Galerkin approach, the variational from of the Stokes problem is written as
ðru;rvÞ � ðp;r � vÞ ¼ 0 8v 2 ½H 1
0ðXÞ�

d ð9Þ
� ðr � u; qÞ ¼ 0 8q 2 L2ðXÞ ð10Þ
where (Æ, Æ) are suitable L2 inner products, and we have arranged the inner products such that the resulting ma-
trix blocks associated with the velocity and pressure are readily identified. We note that the resulting linear
algebraic system generated by the forms will have a diagonal zero block; making the global matrix symmetric
and indefinite.

The variational problem is a saddle-point problem, where the field p (the pressure) acts as a Lagrange mul-
tiplier enforcing the incompressibility condition. Choosing appropriate finite element spaces of the function
spaces for the saddle-point problem is not trivial, as these must satisfy the well-known inf–sup, or Ladyzhens-
kaya–Babuska–Brezzi (LBB), condition [4].

The projection associated with the saddle-point problem may be improved by changing the previously zero
diagonal block to a positive definite block; by making use of the regularized divergence-free constraint
$ Æ u = �ep, with 0 < e < 1. This leads to the following variational form of the (now regularized) Stokes
problem:
ðru;rvÞ � ðp;r � vÞ ¼ 0 8v 2 ½H 1
0ðXÞ�

d ð11Þ
ðr � u; qÞ þ ðep; qÞ ¼ 0 8q 2 L2ðXÞ ð12Þ
In this approach, the parameter e must be chosen sufficiently small to adequately enforce the incompressibility
condition. Moreover, the finite element spaces for the velocity and pressure must still satisfy the inf–sup (LBB)
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condition. Solutions of the above regularized problem approach solutions of the (true) Stokes problem at a
rate OðeÞ [5]. In the limit e! 0 one simply recovers the exact divergence-free constraint.

The rate at which solutions of the regularized problem approach solutions of the (true) Stokes problems
may be improved dramatically to OðekÞ, by using the following form [5]:
ðr � u; qÞ þ ðepðkÞ; qÞ ¼ ðepðk�1Þ; qÞ 8q 2 L2ðXÞ ð13Þ

The linear problem, now becomes a quasi-nonlinear problem due to the iterative nature of the regularization.
The additional cost incurred becomes negligible when dealing with the Navier–Stokes equations, where the
convective terms must be linearized as well.

In practice, the above regularized (weak form Galerkin) formulations are rarely used as they do not offer
significant improvement over the non-regularized variational problem. However, as we discuss in the follow-
ing, regularized formulations offer significant advantages in the least-squares setting.

3.2. Least-squares formulation

In the least-squares approach, the variational problem is such that the velocity field and pressure field min-
imize the sum of the squares of the residuals of the governing equations measured in the L2 norm. The asso-
ciated functional is given by
Jðu; pÞ ¼ 1

2
k�Duþrpk2

L2ðXÞ þ
1

2
kr � uk2

L2ðXÞ ð14Þ
Taking the first variation of the above functional with respect to u and p and setting it to zero, yields the fol-
lowing variational form of the Stokes problem:
ðDu;DvÞ þ ðr � u;r � vÞ � ðrp;DvÞ ¼ 0 8v 2 ½H 2
0ðXÞ�

d ð15Þ
� ðDu;rqÞ þ ðrp;rqÞ ¼ 0 8q 2 �H 1ðXÞ ð16Þ
A notable property of the resulting global coefficient matrix is that it is symmetric and positive definite (SPD).
In addition, the finite element spaces for velocity and pressure are not subject to the inf–sup (LBB) condition
[8].

If we compare the least-squares variational problem with that from the weak form Galerkin approach, we
see that in the least-squares variational problem there is an inherent lack of velocity–pressure coupling, as the
pressure does not appear in any of forms acting as a Lagrange multiplier enforcing the divergence free-
constraint.

In [16], Pontaza demonstrated improved velocity–pressure coupling (and improved conservation of mass)
for least-squares formulations of incompressible flows by using the regularized form of the incompressibility
condition. Such an approach leads to the following variational problem:
ðDu;DvÞ þ ðr � u;r � vÞ � ðrp;DvÞ þ ðep;r � vÞ ¼ 0 8v 2 ½H 2
0ðXÞ�

d ð17Þ
� ðDu;rqÞ þ ðr � u; eqÞ þ ðrp;rqÞ þ ðep; eqÞ ¼ 0 8q 2 �H 1ðXÞ ð18Þ
The underlined terms are the additional terms due to the use of the regularized divergence-free constraint and
are responsible for the improved velocity–pressure coupling. The terms closely resemble those found in the
weak form Galerkin approach, where pressure acts as a Lagrange multiplier enforcing the incompressibility
constraint. Specifically we see that the off-diagonal blocks are augmented with forms enhancing the veloc-
ity–pressure coupling, where the pressure is acting as a Lagrange multiplier enforcing the incompressibility
condition, and the diagonal pressure block is augmented with a scaled mass matrix. Like before, the resulting
global coefficient matrix is SPD and the finite element spaces for velocity and pressure are not subject to the
inf–sup condition.

As in the Galerkin approach, it is to be noted that solutions of the regularized problem approach solutions
of the (true) Stokes problem at a rate OðeÞ. Pontaza [16] used the iterative regularization approach, which
improves the rate to OðekÞ. In other words, the formulation is consistent up to OðekÞ, which can be made arbi-
trarily small.
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Pontaza [16] made use of e = 0.01, with up to k = 1,2, . . . , 5 regularization steps. As alluded to earlier, the
additional cost incurred due to the iterative regularization becomes negligible when dealing with the Navier–
Stokes equations, as the iterative regularization is embedded and made one with the iterative linearization of
the convective terms.

An important and attractive property of this formulation is that, for unsteady problems, the dependence of
the condition number on the time step size is largely suppressed [16]. This is beneficial, as the solvers of choice
are conjugate gradient algorithms, whose rate of convergence strongly depend on the conditioning of the glo-
bal coefficient matrix. We adopt this formulation in the work herein. Additional details of the formulation
may be found in [16].

3.3. First-order system least-squares

The drawback of least-squares formulations is that these have associated with them the requirement of
higher regularity of the finite element spaces. The degree of necessary smoothness is dictated by the differen-
tiability requirements of the governing equation(s) under consideration. For the Stokes problem at hand
u 2 ½H 2

0ðXÞ�
d and p 2 �H 1ðXÞ. The higher regularity requirements stem from the fact that the integration by

parts step in weak form Galerkin formulations, is absent in least-squares formulations.
To reduce the higher regularity requirements, the governing equation(s) are first transformed into an equiv-

alent first-order system. Transformation of the governing equations to an equivalent first-order system neces-
sarily implies that additional independent variables need be introduced, implying an increase in cost. However,
the auxiliary variables may be argued to be beneficial as they may represent physically meaningful variables,
e.g. vorticity or stresses, and will be directly approximated in the model.

The first-order system least-squares (FOSLS) approach renders the formulation practical, in the sense that
existing computational frameworks based on C0 expansions are easily adapted to the least-squares formula-
tions. In addition, the conditioning of the coefficient matrices is lowered as only first-order operators are
involved. Here we use a first-order system based on velocity, pressure, and vorticity.

In view of the identity Du = �$ · ($ · u) + $($ Æ u) and the incompressibility condition, the FOSLS func-
tional for the (non-regularized, i.e. true) Stokes problem is
Jðu; p;xÞ ¼ 1

2
kr � xþrpk2

L2ðXÞ þ
1

2
kr � uk2

L2ðXÞ þ
1

2
kx�r� uk2

L2ðXÞ ð19Þ
for u 2 ½H 1
0ðXÞ�

d , p 2 �H 1ðXÞ, and x 2 [H1(X)]2d�3. We note that no additional or fictitious boundary condi-
tions for the auxiliary variables are needed, as these variables are simply used to reduce differentiability
requirements and not used to replace the primitive variables (velocity and pressure).

3.4. Time stepping and nonlinearities

When using the non-stationary (unsteady) form of the equations, the transient terms are represented by a
stiffly-stable second-order scheme (a BDF2 scheme):
ou

ot
� 1

Dt
3

2
usþ1 � 2us þ 1

2
us�1

� �

where Dt = ts+1 � ts is the time increment, and it is implied that the problem will march in time. Once the tem-
poral approximation has been introduced the momentum equations are written as us+1 � DtL = 0, for the time
stepping. The BDF2 time stepping scheme is non-self starting, so the first time step is taken using a BDF1
scheme (which is the backward Euler scheme).

In the Navier–Stokes equations, the nonlinear convective terms are linearized around u0 using Newton’s
method
ðu � rÞu � ðu0 � rÞuþ ðu � rÞu0 � ðu0 � rÞu0
At each time step, we iteratively solve a linearized system of algebraic equations with respect to the Newton
linearization. In turn, at each nonlinear iteration, the system of linear algebraic equations may be solved using
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a direct method (e.g. Cholesky factorization) or an iterative method (e.g. preconditioned conjugate gradient).
Here, we use a matrix-free conjugate gradient algorithm with a Jacobi preconditioner. Convergence of the
PCG iterative algorithm is declared when the discrete L2 norm associated with the residual vector of the linear
algebraic equations is less than 10�6.

On a given time step, nonlinear convergence in velocities is declared when the criterion
kduk
kuk ¼

kuðkÞ � uðk�1Þk
kuðkÞk < 10�4
is satisfied; where iu(k)i denotes the discrete L2 norm of the velocity vector at the kth nonlinear iteration on a
given time step. When using the regularized form of the divergence-free constraint, convergence of the pres-
sure field is also monitored due to the iterative regularization, and is declared when idpi/ipi < 10�3. Since the
regularization/linearization steps are embedded in each other, both criteria need to be satisfied to declare non-
linear convergence. When using a small time step size, the criteria is satisfied in at most two or three linear-
ization steps. However, the number of steps till convergence is also largely dependent on the flow field and
Reynolds number.

4. Numerical examples

4.1. Verification: Kovasznay flow

The benchmark problem to be used for the purposes of verification is an analytic solution to the two-
dimensional, stationary incompressible Navier–Stokes due to Kovasznay [11]. The spatial domain in which
Kovasznay’s solution is defined is taken here as the bi-unit square �X ¼ ½�0:5; 1:5� � ½�0:5; 1:5�. The solution
is given by
uðx; yÞ ¼ 1� ekx cosð2pyÞ

vðx; yÞ ¼ k
2p

ekx sinð2pyÞ

pðx; yÞ ¼ p0 �
1

2
e2kx

ð20Þ
where k = Re/2 � (Re2/4 + 4p2)1/2, p0 is a reference pressure (an arbitrary constant), and we choose Re = 40.
We perform a p-refinement study, where we choose and fix a spatial discretization �Xh, and systematically

increase the p-level of the element basis. Fig. 2 shows the discretization of the domain, consisting of 16 trian-
gles. Having chosen appropriate error measures, these measures should decay exponentially fast as the p-level
is increased. In a logarithmic-linear scale the expected rate of convergence would appear as a straight line.

By ‘appropriate error measures’, we mean the L2 and H1 norms of the difference between the numerical
solution and the exact solution given by Eq. (20); in addition to the value of the L2 least-squares functional.
These are appropriate error measures to convincingly show that the least-squares formulation delivers solu-
tions to the incompressible Navier–Stokes equations, i.e. verification.

The exact solution, given by Eq. (20), is used to prescribe Dirichlet velocity boundary conditions on C and
pressure is specified at a point. No boundary conditions for the vorticity are necessary. In Fig. 2 we plot the
value of the L2 least-squares functional and L2 error of the velocity, pressure, and vorticity fields as a function
of the expansion order in a logarithmic-linear scale. Exponentially fast decay (spectral convergence) of the L2

least-squares functional and L2 error is observed.
To make a direct comparison of the behavior of the error measures using quadrangles and triangles, we

note that the error measures in Fig. 2 for even p-levels correspond to those obtained using the mesh of trian-
gles and those for odd p-levels to a mesh of eight quadrangles; obtained by joining pairs of triangular elements
along the edge opposite the right angle. The numerical results using quadrangles are directly taken from our
previous work [14]. We see that both approaches give the desired spectral convergence and a similar rate of
decay of error values.

Note that the spectral convergence of the least-squares functional automatically implies exponentially fast
decay of the divergence of the velocity field. In addition we note that the least-squares functional gives an
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Fig. 2. Decay of the least-squares functional and convergence of the velocity, pressure, and vorticity fields to the Kovasznay solution in
the L2 norm. Even p-level error measures are for the mesh of triangles and odd p-level error measures are for a mesh of quadrangles.
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upper-bound for the L2 error of the velocity and pressure. In the absence of an exact solution (which is always
the case for problems of interest) the value of the least-squares functional provides a valuable sharp estimate
of the error.

Fig. 3 shows the error of the velocity and pressure fields measured in H1. This error measure is more strin-
gent than that measured in L2. Exponentially fast decay (spectral convergence) of the H1 error is observed.

4.2. Lid-driven flow in a wedge

We consider the lid-driven incompressible flow inside a wedge of aspect ratio 2
ffiffiffi
3
p

:3 (a 2
ffiffiffi
3
p

equilateral tri-
angle). In this geometry the use of quadrangles is problematic, whereas the use of triangles is quite natural.
Our aim in presenting numerical results for this problem is to demonstrate the flexibility and ease of using
triangles to partition such a geometry.
expansion order, p
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Fig. 3. Convergence of the velocity and pressure fields to the Kovasznay solution in the H1 norm. Even and odd p-level error measures are
for the mesh of triangles.
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This is a pure-velocity Dirichlet problem, where no slip boundary conditions, u = v = 0, are prescribed on
the two side-walls, v = 0 on the lid surface, and a regularized u-velocity distribution is prescribed on the lid;
which drives the flow in the wedge. The u-velocity on the driven surface is a hyperbolic tangent u-velocity
distribution:
Fig
ulidðxÞ ¼
tanhðbðxþ

ffiffiffi
3
p
ÞÞ �

ffiffiffi
3
p
6 x 6 0

� tanhðbðx�
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ÞÞ 0 < x 6
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3
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(

with b > 0. Here we take b = 50, which gives a smooth but at the same time sharp transition from u = 0.0 to
u = 1.0 near the walls of the driven surface. This boundary condition results in a well-posed boundary condi-
tion, in the sense that singularities at the corners of the driven surface are suppressed. It closely emulates the
standard (ill-posed) boundary condition where no transition is allowed between the no-slip and the lid-driven
velocity. A pressure datum, p = 0, is prescribed at the apex of the wedge to remove the pressure null-space of
the pure-velocity Dirichlet problem.

We consider flow conditions corresponding to increasing Reynolds numbers and use the three successively
finer meshes shown in Fig. 4. As the Reynolds number is increased the flow field inside the wedge displays
richer flow physics, and increasing resolution is needed. Here we take the dual path of h- and p-refinements,
where in addition to increasing the order of the polynomial basis inside each triangle (p-refinement), the num-
ber of triangles in the mesh is increased (h-refinement). The meshes M1, M2, and M3 in Fig. 4 have 34, 86, and
199 triangles, respectively.

We use the stationary form of the equations and use a continuation technique with respect to the Reynolds
numbers to compute the flow fields starting with Re = 100, with increments of 100. Typically only 3 Newton
linearization steps are needed to compute the flow field at a given Reynolds number.

Fig. 5 shows vorticity contours of the flow field and the u-velocity distribution along the vertical center-line
of the wedge at p-levels of 10 and 12, for Reynolds numbers Re = 100, 500, and 103 in the meshes M1, M2, and
M3, respectively. Fig. 6 shows streamlines of the flow fields up to Re = 2 · 103, computed by solving
�Dw = xz for the stream-function w in a post-processing stage. As the Reynolds number is increased addi-
tional recirculation regions appear in the wedge, indicative of the richer flow physics.

The velocity distributions along the vertical center-line in Fig. 5 are compared against tabulated data in
[10], where the same problem was solved using over 40,000 (low-order) triangles with an upwinding scheme.
Good agreement is found, although we predict higher peak velocities. The lower peak velocities reported in
[10] are consistent with the dissipative nature of low-order elements and upwinding schemes. This brings
up one of the nice features of least-squares formulations which need no stabilization (i.e. upwinding) for sin-
gularly perturbed problems, such as the high Reynolds number limiting cases.

Another nice property we wish to emphasize is that no special care is needed when numbering the global
degrees of freedom. We use a matrix-free preconditioned conjugate gradient (PCG) algorithm, which is insen-
sitive to the way the degrees of freedom are numbered, as no matrix storage or explicit matrix manipulations
are required. The use of the matrix-free PCG solver is arguably optimal, as the resulting system of linear alge-
braic equations is SPD. Other solution approaches, such as algebraic multigrid methods [7] are possible as
well. This is unlike the traditional implementation of the spectral element method [9], where interior
degrees-of-freedom are statically condensed using linear algebra on dense element-level matrices, so that a
. 4. Successively refined meshes M1, M2, and M3 for the lid-driven flow in a wedge. The wedge is a 2
ffiffiffi
3
p

equilateral triangle.
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c

smaller sparse interface problem remains. Such an approach is always tied to a specific degree of freedom
numbering scheme, to efficiently form and solve the interface problem.

4.3. A model problem to test conservation of mass

This is the model problem of Chang and Nelson [2] where a cylinder of unit diameter is moving in a very
narrow channel, and is used here to test for conservation of mass. We first consider the original problem of
Chang and Nelson [2], where the Stokes equations are solved. We then present results for unsteady flow gov-
erned by the Navier–Stokes equations, to test for conservation of mass in time.



a b

c d
Fig. 6. Streamlines of the flow field for (a) Re = 100, (b) Re = 500, (c) Re = 103, and (d) Re = 2 · 103.
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The finite element mesh in the geometry of Chang and Nelson [2] consists of 96 triangles and is shown in
Fig. 7. The boundary conditions are u = 1, v = 0 at the upstream and lateral boundaries and no-slip boundary
conditions, u = v = 0, at the cylinder surface. Outflow boundary conditions are imposed in a weak sense
through the least-squares functional [14,15]. For an outflow boundary whose unit normal is aligned with
the x-axis, the outflow boundary conditions are:
Fig
�p þ 1

Re
ou
ox
¼ 0;

1

Re
ov
ox
¼ 0
4.3.1. Stokes flow
The governing equations for Stokes flow are obtained by simply setting Re = 1 and omitting the transient

term and velocity nonlinearities in the Navier–Stokes equations. Mass flow rates are computed at the crown of
the cylinder, where the gap between the channel walls and cylinder surface is the smallest, and at the outflow of
the channel. At a p-level of 6, _mcrown= _min ¼ 0:979 and _mout= _min ¼ 0:978. This corresponds to a 2.2% mass loss.
x / D

y
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. 7. Computational domain and mesh for the model problem to test for conservation of mass, due to Chang and Nelson [2].
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At a p-level of 8, _mcrown= _min ¼ 1:000 and _mout= _min ¼ 1:000, corresponding to zero mass loss. The u-velocity
component in the gap between the channel walls and cylinder surface reaches a maximum value of 4.206.
A velocity contour plot of the flow field, showing the accelerating flow at the crown of the cylinder, is shown
in Fig. 8.

Chang and Nelson [2] used over 2000 low-order triangles on the same domain, and showed poor conser-
vation of mass by the least-squares formulation. This can be explained by interpreting the least-squares for-
mulation as a least-squares collocation scheme, with quadrature points as collocation points. When using
low-order elements, the collocation solution corresponds to the solution of the normal equations of an extre-
mely overdetermined system. In other words, the least-squares solution is poor as too many residual equa-
tions are being forced to zero at the collocation points with too few adjustable degrees of freedom. As the
p-level is increased, the normal equations become compatible and the least-squares solution improves dramat-
ically [15]. This is appreciated, for example, by plotting the u-velocity profile at the crown of the cylinder for
solutions of the flow field at increasing p-level; as shown in Fig. 9. From Fig. 9 we see a dramatic improve-
ment in the least-squares solution by increasing the p-level from 4 to 6. This is one of the reasons why high-
order element basis are preferred in a least-squares formulation.

In their proposed formulation, Chang and Nelson [2] introduced an additional degree of freedom without
increasing the number of residual equations; which improved the compatibility of the normal equations and
allowed for an improved least-squares solution using the low-order triangles. The additional degree of free-
dom is a dummy Lagrange multiplier which explicitly enforces the divergence-free constraint. Unfortunately,
this results in a saddle-point problem in which the finite element spaces for the dummy Lagrange multiplier
and the velocity must satisfy a (strict, i.e. inf–sup) compatibility condition.
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Fig. 8. u-velocity contours for Stokes flow in the channel, p-level 8.
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Fig. 9. u-velocity profile at the crown of the cylinder for Stokes flow in the channel, p-refinement.
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4.3.2. Unsteady Navier–Stokes flow

The Reynolds number considered is Re = 100. The upper channel wall is shifted up by 0.03 units to pro-
mote the desired unsteadiness and the outflow boundary is moved downstream by 5.0 units to allow the wake
to become well-developed.

We find that the vortex shedding occurs at a well-defined period of 1.88 time units. To adequately resolve
the temporal evolution of the flow field we use Dt = 0.02, which gives a temporal resolution allowing for
slightly over 90 time steps per shedding cycle.

The unsteady problem is more difficult in terms of velocity–pressure coupling and conservation of mass, as
the pressure evolution in time must be such that mass is conserved at all times. Fig. 10a shows time histories
of the mass flow rates at the crown cross-section and at the outlet of the channel for t 2 [190,200], by which
time the flow has well attained its periodic unsteady state. The expected response is _m= _min ¼ 1:0 at all times.

From Fig. 10a we see that excellent conservation of mass is achieved. Note that the scale on which the mass
flow rates are plotted allows for a maximum deviation of ±2.0% mass loss/gain, which is never reached. From
Fig. 10a we see that the deviation from _m= _min ¼ 1:0 is at all times negligible.

Fig. 10b shows the time history of the drag force exerted on the cylinder by the oncoming fluid. We com-
pare our results with those reported in [16] for the same problem, obtained using quadrangles and a BDF3
time stepping scheme, by plotting the time histories alongside and find excellent agreement.

4.4. Unsteady flow past two circular cylinders

The flexibility of using triangles to partition a domain is further demonstrated in this last numerical exam-
ple, where we consider the unsteady flow past two circular cylinders in a side-by-side arrangement. Both cyl-
inders are equal in size, with diameter D, and face the free-stream. The flow around such an arrangement is
characterized by distinct flow regimes, depending on the gap size S between cylinder surfaces [21,22].

Here we consider a gap size S/D = 0.85 and flow conditions Re = 100, based on the free-stream velocity
and cylinder diameter. For this gap size, the flow through the gap is diverted towards one side or the other
and the vortex wake becomes distinctly asymmetric. In addition, gap vortices are amalgamated with dominant
outer vortices leading to the formation of a single large-scale vortex street [21].
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Fig. 10. Unsteady Navier–Stokes flow, BDF2 time stepping and p-level 8. (a) Time history of mass flow rates at the crown and outlet
showing zero mass loss in time. (b) Time history of the drag force exerted on the cylinder.
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The finite element mesh used for the computation consists of 561 triangles and is shown in Fig. 11. In the
far-field, where the solution will be fairly smooth, we use large triangles whereas in the wake region and in
the gap, where smaller scales will be present, we use smaller triangles. The p-level in each triangle is set to
8 and the time step size is set to Dt = 0.05.

The size of the computational domain is taken sufficiently large to preclude unwanted effects on computed
flow metrics due to blockage, or location of inflow and outflow boundaries. The circular cylinders are of unit
diameter, with their centers located at (x,y) = (0,�0.925) and (0, 0.925), and are placed in the rectangular
region �X ¼ ½�14:5; 30:5� � ½�20:5; 20:5�.
/ D y / D - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0 2 5 3 0

distribution around the circular cylinders.

/ D y / D 0 5 1 0 1 5 2 0 2 5 3 0 x / Dy
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121 Vortex amalgamation leading to a single large-scale vortex street downstream of the cylinders. Snapshots of vorticity contours at

different instants in time.
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At this gap size, we did not see (or expected) a well-defined periodic steady state. The simulation was thus
carried out for t 2 [0,250], by which time the flow exhibited ‘‘well-developed’’ characteristics such as intermit-
tent bistable gap jets and amalgamation of gap vortices leading to the formation of a single large-scale vortex
street.

Fig. 12 shows instantaneous vorticity contours at t = 200 and t = 250. In accordance with the experimental
visualizations of Williamson [21], a single large-scale vortex street is formed downstream of the cylinders; by
virtue of vortex interactions in the near-wake of the cylinders. Gap vortices from both cylinders are squeezed
and amalgamated with dominant outer vortices.

Fig. 13 shows the time history of the lift and drag forces exerted on the cylinders by the flow field. In accor-
dance with experimental observations, there exists a mean repulsive (lift) force between the cylinders. The
forces do not display a single well-defined frequency, but show harmonic behavior at different frequencies
which vary in time.

5. Summary and concluding remarks

We presented a spectral element least-squares formulation for incompressible flows using a C0 triangle
based spectral nodal basis. For unsteady flows, time stepping was performed using a second-order BDF
scheme. Numerical examples using a FOSLS formulation with vorticity as an auxiliary variable were pre-
sented. The spectral convergence property was verified for smooth solutions and excellent conservation of
mass was observed for steady and unsteady problems. The flexibility of using triangles to partition geometries
where the use of quadrangles would be problematic and/or inefficient was demonstrated in lid-driven flows in
a wedge and flow past two circular cylinders in a side-by-side arrangement.

We conclude by making the following remarks regarding conservation of mass in least-squares formula-
tions for the (un-split) incompressible Navier–Stokes equations. For the stationary form of the equations, good
conservation of mass is due to the use of high p-levels (in either quadrangles or triangles). If one uses the reg-
ularized form of the divergence-free constraint, equally good conservation of mass and equally accurate
numerical results are observed.
i m e CD5 0 1 0 0 1 5 0 2 0 0 2 5 0 1 . 2lift and drag forces on the cylinders. The solid line correspond to forces on the cylinder whose center is located at
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For the non-stationary form of the equations, good conservation of mass is due to the use of high p-levels (in
either quadrangles or triangles) and the use of the regularized form of the divergence-free constraint. For non-
stationary (i.e. unsteady) problems, we observe that a strong velocity–pressure coupling is necessary in order
to maintain good conservation of mass in time – and the regularized form of the divergence-free constraint is
used to ensure this strong coupling [16].
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